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The investigation of neural substrates of autism spectrum disorder using neuroimaging has been the
focus of recent literature. In addition, machine-learning approaches have also been used to extract
relevant information from neuroimaging data. There are only few studies directly exploring the inter-
regional structural relationships to identify and characterize neuropsychiatric disorders. In this study,
we concentrate on addressing two issues: (i) a novel approach to extract individual subject features from
inter-regional thickness correlations based on structural magnetic resonance imaging (MRI); (ii) using
these features in a machine-learning framework to obtain individual subject prediction of a severity
scores based on neurobiological criteria rather than behavioral information. In a sample of 82 autistic
patients, we have shown that structural covariances among several brain regions are associated with the
presence of the autistic symptoms. In addition, we also demonstrated that structural relationships from
the left hemisphere are more relevant than the ones from the right. Finally, we identified several brain
areas containing relevant information, such as frontal and temporal regions. This study provides
evidence for the usefulness of this new tool to characterize neuropsychiatric disorders.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
condition characterized by impaired social communication, social
reciprocity, and repetitive/stereotypic behavior (Gillberg, 1993;
Wing, 1997). Evidence from neuroimaging and post-mortem
studies suggests that ASD is accompanied by neuroanatomical
differences in a variety of brain regions including the cerebellum
(Courchesne et al., 1988), the amygdalaehippocampal complex
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The Autism Research Centre,
up, University of Oxford. It is
Brain Maturation, Institute of
tical order: Bailey AJ, Baron-
abarti B, Daly EM, Deoni SC,
s DK, Lai MC, Lombardo MV,
Pasco G, Sadek S, Spain D,

All rights reserved.
(Aylward et al., 2002), fronto-temporal regions (Abell et al., 1999)
and caudate nucleus (McAlonan et al., 2002). However, reported
findings are highly variable and the neurobiology of ASD remains
poorly understood.

Such high variability of findings among previous volume-based
investigations might be explained in part by issues related to the
high clinical heterogeneity of patients between studies. In addition,
the investigation of distributed differences in brain anatomy, as
expected in ASD, requires a spatially unbiased (e.g. mass-
univariate) analytical approach, which is less likely to succeed
due to conservative statistical thresholds. Mass-univariate
approaches are suitable to the detection of large focal changes,
but they have poor performance at dealing with small, distributed
changes (Mourao-Miranda et al., 2005). Lastly, an increasing
number of studies suggests that individuals with ASD have abnor-
malities in the development of several ‘neural systems’ (Ecker et al.,
2012), and also display atypical functional connectivity (Assaf et al.,
2010; Minshew and Williams, 2007; Poustka et al., 2011). Inter-
regional correlations are, however, not generally utilized by
conventional analysis mass-univariate techniques to examine
neuroanatomical differences associated with ASD.
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The investigation between anatomical relationships among
brain structures is referred to in literature as structural covariance
(Mechelli et al., 2005). The neurophysiological meaning of struc-
tural covariance remains relatively unexplored. However anatom-
ical features of interconnected regions are expected to be correlated
(McAlonan et al., 2005; Mechelli et al., 2005) and have been
explored between homotopic regions in contralateral hemisphere
and gender differences. Using voxel-based-morphometry (VBM),
Nosarti et al. (2011) reported structural covariance comparisons
between preterm adolescents and full-term controls, identifying
differences in several cortical and subcortical regions. Soriano-Mas
et al. (2012) investigated gray-matter volumetric relationships of
the neostriatum of healthy subjects. In children with ASD,
McAlonan et al. (2005) characterized structural correlations
between brain regions of the limbic-striatal ‘social’ brain systems in
ASD.

Recently, pattern recognition methods based on machine-
learning algorithms have been used to predict or classify individ-
uals of different groups (Mourao-Miranda et al., 2005; Oliveira
et al., 2010; Sato et al., 2008) on the basis of functional or struc-
tural magnetic resonance imaging (MRI) data (Fu et al., 2008;
Kasparek et al., 2011; Plant et al., 2010). For instance, Ecker et al.
(2010a,b) demonstrated that adults with ASD could be distin-
guished from neurotypicals on the basis of their neuroanatomy at
a sensitivity and specificity of 90% and 80%, respectively. Similar
accuracies have also been reported in children and adolescents
with ASD (Uddin et al., 2011). Both of these studies were based on
voxel-based values (gray/white matter probabilities) measured at
each spatial location in the brain. However, to the best of our
knowledge, nobody has yet applied pattern recognition algorithms
to investigate the predictive value of covariance measures between
morphometric features (e.g. cortical thickness) for symptom
severity in ASD.

Notably, the use of pattern recognitionmethods to predict group
membership (e.g.: patients vs. controls) or symptoms scales should
not be viewed solely as a diagnostic/clinical tool. However, it can be
used to develop objective biological measures for each individual
from a set of sample data, which may provide insights into the
neural substrates associated with a condition. Here we examined
whether patterns of structural relationships between a set of brain
regions are associated with autistic symptoms. This approach was
based on the previous observation that Ecker et al. (2010a,b)
predictive information on symptom severity is distributed across
several brain regions or neural systems. We thus aim to evaluate
whether the interaction between these regions also provides
predictive value. Since autism is frequently associated with
abnormalities in several neural systems/networks, it was expected
that structural co-variations are of relevance to predict the pres-
ence of autistic symptoms.

In summary, the aims of the current study were: (i) to create
a set of features representing inter-regional thickness correlations
(IRTC) for each participant; (ii) to use these features within
a machine-learning framework to evaluate whether structural
covariance features are related to autistic symptoms in the ASD
group; and (iii) to identify the most relevant regions in this struc-
tural analysis.

2. Material and methods

2.1. Participants

Eighty-two patients with ASD and eighty-four matched controls
(all male, aged 18e42 years, mean age and full scale IQ � standard
deviation respectively: 26 � 7 years and 110 � 14; and 28 � 6 years
and 114 � 12) were recruited by advertisement and examined at
one of three centers: The Institute of Psychiatry, Kings College
London; the Autism Research Centre, University of Cambridge; the
Autism Research Group, University of Oxford. The patients were
diagnosed following the ICD-10 research criteria and the Autism
Diagnostic Interview-Revised (ADI-R; Lord et al., 1994). The Autism
Diagnostic Observation Schedule (ADOS; Lord et al., 1989) was used
to evaluate the symptoms severity (mean � s.d.: 9.26 � 4.49 (3e
21)), but it was not used as an inclusion criterion (scores of ‘3’ for
items were collapsed into ‘2’). All volunteers provided written
informed consent, according to the approval from the National
Research Ethics Committee, Suffolk, UK. The data from these
patients have already been published in Ecker et al. (2012) in
a voxel-based-morphometry study, where further details about this
sample of patients can be found.

All participants with ASD were diagnosed according to ICD-10
research criteria, which were confirmed using the ADI-R to
ensure that all ASD participants met the criteria for childhood
autism. All cases reached ADI-R algorithm cut-offs in the three
domains (language, social interaction, repetitive behaviors),
although failure to reach cut-off in one of the domains by one point
was permitted. Thus, although ADOS cut-off for autism is 10, the
mean and range may be less as ADOS was not used as inclusion
criteria. We used ADOS rather than ADI measures since the former
may be more closely related to the current state of brain anatomy
than past symptoms. Hence, it is not uncommon for individuals to
meet ADI-R but not ADOS diagnostic criteria during adulthood. In
the current study, we focused on the prediction of ADOS score
because it has been used in the past to correlate measures of brain
anatomy with current symptoms in many previous studies
including our previously published AIMS papers (Ecker et al., 2010a,
2012).

2.2. MRI data acquisition

MRI data were acquired using 3T systems (8-channel RT head-
coil) at three sites: Department of Radiology, University of Cam-
bridge (GE Medical Systems HDx), Centre for Neuroimaging
Sciences, Institute of Psychiatry, Kings College London (GE Medical
Systems HDx) and FMRIB Centre, University of Oxford (Siemens
Medical Systems Trim Trio). A specialized and validated protocol
(Deoni et al., 2008) was applied in order to guarantee standardi-
zation of acquisition in multiple sites studies.

For each subject, SPGR T1-weighted volumetric acquisition was
performed with TR ¼ 1800 ms, inversion-time ¼ 850 ms, flip-
angle¼ 2000, FOV¼ 25 cm,with 176 contiguous 1mm2 axial slices of
256 � 256 voxels with an in-plane resolution of 1 mm2.

2.3. Image processing

The FreeSurfer analysis suite (http://surfer.nmr.mgh.harvard.
edu/) was used to derive models of the cortical surface in each
T1-weighted image. These well-validated and fully automated
procedures have been extensively described elsewhere (Dale et al.,
1999; Fischl and Dale, 2000; Fischl et al., 2004). In the present
study, the pre-processed data considered at further analysis were
the average cortical thickness measurements of each region from
the cortex parcellation resulting in total of 70 parcellated regions
(see Supplementary material).

2.4. Inter-regional thickness correlations

Fig. 1 presents the data flow of the approach proposed in the
current study. Indexes for inter-regional thickness correlation
(IRTC) are usually estimated using Pearson correlation between the
cortical thicknesses of each region. If subsequent to normalizing the
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Fig. 1. Flowchart of preprocessing, support vector regression and leave-one-subject-out procedures.
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thickness measures (subtracting the mean and dividing by the
standard deviation), the correlation coefficient between two areas
are calculated by:

rA;B ¼
XN

i¼1

XA;iXB;i

N
;

where XA,i and XB,i are the normalized thickness measures in areas
A and B of subject i, and N is the total number of subjects in the
sample. IRTC can then be calculated for all pairwise combinations of
M regions.
2.5. Features of IRTC for single subjects

An average of IRTC measure can then be calculated as the mean
of all M pairwise correlations:

rmean ¼
XN

i¼1

XM

j¼1

Xj;iXj0;i

NM
¼

XN

i¼1

PM
j¼1

Xj;iXj0;i

M
N

¼
XN

i¼1

ci
N
;

where

ci ¼
XM

j¼1

Xj;iXj0;i

M
:

By using this measure, the average IRTC can be represented by
the sum of single subject quantities. Thus, ci can be viewed as the
amount of mean IRTC from subject i, and it is the mean of all
(Xj,i, Xj0 ,i) pairs (j ¼ 1, 2,.,M). On the other hand, ci is collapsing all
information of pairwise correlations between regions in a single
measure (the mean). We propose not only the mean (ci) to be used
as an individual feature of global (whole brain) dependence, but
also the standard deviation of the pairs (Xj,i, Xj0 ,i), as a variability
descriptor. Briefly, given the thickness of parcellated regions from
a single subject, these twomeasures (mean and standard deviation)
were used as features depicting the inter-regional correlations for
this subject.

In this study, healthy control data were solely used for
normalization purposes (when subtracting the mean and dividing
by the standard deviation of control group) as described previously
in Section 2.4.
2.6. Use of IRTC to predict behavioral scores

By using the approach described in previous section, we used
the two IRTC features of a subject as predictor variables to estimate
ADOS, i.e., to evaluate the presence of current autistic symptoms. In
order to build a non-linear prediction model, we applied the
support vector regressionwith radial basis function (SVR) proposed
by Smola and Schölkopf (1998), which is a well established
approach for non-linear regression. In the current study, since the
two explanatory variables were normalized to mean zero and
variance one, the gamma parameter was set to 0.5 (i.e.: 1/[number
of features]), which is a standard heuristic (Chang and Lin, 2001). In
order to avoid overfitting problems, the ADOS predictions were
carried out using the leave-one-out cross-validation technique.

In order to obtain a more detailed investigation of the depen-
dence between IRTC and autistic symptoms, we also carried out
separate analyses within hemispheres and a regional relevance. It is
well known that some cognitive functions have an asymmetric
laterality. In addition, we aimed to identify the most relevant
regions for which IRTC contain more predictive information for
ADOS scores. The cortical thickness correlations and support vector
regressionwithin hemispheres constituted a laterality analysis. The
Spearman correlation coefficient between observed ADOS and the
predicted score was calculated for the whole brain and within
hemispheres to provide measure of accuracy. We considered
Spearman correlation because it is more robust against outliers and
violations of linearity when compared to Pearson correlation
coefficients. The contribution (i.e. relevance) of each brain region
was calculated using a leave-one-region-out approach. Similarly to
the laterality analysis, Spearman correlation between observed and
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predicted ADOS scores were calculated while leaving out one
region at a time (instead one hemisphere). The differences between
these correlations and the one when using the whole-brain IRTC
provided ameasure of contribution to the structural covariances for
each brain region.

3. Results

Fig. 2 depicts the scatter-plot between leave-one-out predicted
values and observed ADOS scores for individuals with ASD. For the
whole-brain analysis, the correlation between predicted and
observed scores was 0.362 (p < 0.001), indicating that measures
IRTC can provide information about the severity of autistic symp-
toms. The left hemisphere analysis provided a correlation of 0.290
(p < 0.001). Interestingly, right hemisphere analysis resulted in
a correlation coefficient of 0.072 (p ¼ 0.520), suggesting a possible
discrepancy between hemispheres in the dependence between
IRTC and ADOS scores. Fig. 3 and Table 1 show the upper 10% of
regions with most relevance in the prediction.

4. Discussion

In the present study, we introduced a novel approach to
measuring inter-regional thickness correlations and to predict the
Fig. 2. Scatter-plot of leave-one-out predictions and observed ADOS based on the regions o
between predicted and observed scores is shown in parenthesis.
presence of autistic symptoms measured by the ADOS. The left
hemisphere was more relevant for the prediction of autistic
symptoms than the right hemisphere. Speculatively, this laterality
effect may be related either or both to the fact that all participants
were male and right-handed. This suggests an influence of the
language dominance, which is localized more frequently in the left
hemisphere in males (Shaywitz et al., 1995) and/or an influence of
the handedness (Pujol et al., 1999), which is represented by the
contralateral (i.e. left) hemisphere.

Our proposed approach has important advantages when
compared to conventional structural covariance analysis, as it is
based on predictive informationwithin individuals (e.g. individuals
with ASD) and not e as traditionally e need covariances/correla-
tions across a group of subjects. This property is of importance as it
may be possibly explored as a potential objective biological marker
for individuals rather than groups; i.e. the investigation of struc-
tural covariance at the group level is not suited to provide infor-
mation about the accuracy on the level of individuals.

Brain abnormalities associated with ASD are complex and
heterogeneous (Amaral et al., 2008; Toal et al., 2005), and the
search for a neuroanatomical signature of ASD is thus inherently
complicated. One reason for a lack of biomarkers for the condition
is that ASD is associated with abnormalities in several large-scale
neural systems (Minshew and Williams, 2007) rather than
f whole brain, left and right hemisphere. The value of Spearman correlation coefficient



Fig. 3. Brain mapping of the 10% regions which IRTC were the most relevant to predict ADOS score. The color bar depicts the relevance value, which is measured by the decrement
in correlation coefficient (between predicted and observed ADOS) when the region is excluded from IRTC calculation.

J.R. Sato et al. / Journal of Psychiatric Research 47 (2013) 453e459 457
isolated brain regions. Here, we developed an approach, which
allowed us to use information on the inter-regional correlational
structure in order to make a prediction. Thus, instead of examining
specific brain regions independently, our approach used mean
measures of inter-regional correlations throughout the entire brain.
This is a fundamental difference when compared to previous
studies reported in literature (Ecker et al., 2010a,b) demonstrating
that predictive information for autism diagnosis/severity is located
in several spatially distributed patterns of neuroanatomical varia-
tion. In the present study, however, we explored whether the
intercorrelations between components of this pattern might also
be predictive for symptom severity.



Table 1
Regions with themost relevant IRTC for the prediction of ADOS scores. The relevance
values are measured by the decrement in correlation coefficient (between predicted
and observed ADOS) when the region is excluded from IRTC calculation.

Region Relevance

Right pars triangularis 0.0526
Left post-central 0.0565
Left caudal middle frontal 0.0570
Left temporal pole 0.0585
Left pars triangularis 0.0589
Left frontal pole 0.0672
Left entorhinal 0.0678
Right banks of superior

temporal sulcus
0.0710
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Several structural and functional MRI studies have demon-
strated that the degree of clinical impairments in individuals with
ASD is associated with abnormalities in brain connectivity. For
example, Assaf et al. (2010) found that the degree of functional
connectivity between regions related to the default mode network
was inversely correlated with ADOS scores in ASD. Also, abnor-
malities in white matter tracts that integrate fronto-temporal
cortical networks were negatively correlated with symptom
severity measured by the ADOS (Poustka et al., 2011). In this regard,
our results complement previous data from functional and diffu-
sion tensor imaging studies by showing that patterns of IRSC across
the cortex may provide predictive value for the severity of autistic
symptoms.

However, it is important to mention that the neurophysiological
interpretation and mechanisms associated with inter-regional
anatomical correlations remains speculation. Most previous
investigations based on structural covariance note that activity-
related morphological plasticity might lead to regional anatomical
features (e.g.: cortical thickness, volume, shape, etc) correlations
(McAlonan et al., 2005; Soriano-Mas et al., 2012). However, it is
unclear whether these correlations result from shared develop-
mental influences (i.e. neurotrophic factors) or may be related to
common experience-related plasticity (Mechelli et al., 2005). This
alternative hypothesis is supported by the observation that the
volume of some regions of the visual system (such as the lateral
geniculate nucleus, the primary visual cortex, etc.) is significantly
correlated across individuals (Andrews et al., 1997). Furthermore,
specific brain regions undergo a common age-related decline in
volume (Raz et al., 1997). In this sense, our findings could be
explained not only by plasticity induced inter-regional interactions,
but also by shared environmental influences. Alternatively, as
autism is associated with both abnormalities in neural systems
(circuits) which, in turn, may be linked to environmental factors, it
remains unknown whether nature or nurture induces shared
neuroanatomical variation.

The present study has some methodological limitations. Due to
the relatively small sample size, it was not possible to explore
whether global inter-regional correlations of cortical thickness may
reliably predict symptoms’ severity of different subgroups of
autism (e.g. individuals with Asperger’s syndrome). Secondly, total
ADOS scores may be confounded by coping strategies developed
across the life-span and may therefore not accurately represent the
severity of current autistic symptoms on a global scale. Also, it has
been noted that ADOS scores do not provide ‘standardized’
measures of symptom severity and hence scores may not be
comparable across modules and/or subject groups. Here, we
specifically administeredmodule 4 in all of our adult cases, which is
why our results cannot fully be explained by this limitation.
Moreover, we have recently demonstrated that ASD classifiers
based on the brain anatomy are more closely related to current
symptoms (i.e. ADOS scores) than past symptoms (i.e. ADI-R scores)
(Ecker et al., 2010a). Hence, our results add to the emerging
evidence that the current state of the brain (e.g. in adulthood) is
more closely related to current autistic symptoms than past
symptoms in childhood. In addition, future research is needed to
investigate the clinical specificity of the proposed classifier, as we
did not include data of an alternative clinical population (e.g.
individuals with ADHD).
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